Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

We were unable to process your file(s) fully electronically and have proceeded by

- [] Scanning (parts of) your article
- [] Rekeying (parts of) your article
- [] Scanning the artwork

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

Location in article

<table>
<thead>
<tr>
<th>Query / Remark: click on the Q link to go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please insert your reply or correction at the corresponding line in the proof</td>
</tr>
<tr>
<td>Q1</td>
</tr>
<tr>
<td>Q2</td>
</tr>
<tr>
<td>Q3</td>
</tr>
<tr>
<td>Q4</td>
</tr>
<tr>
<td>Q5</td>
</tr>
<tr>
<td>Q6</td>
</tr>
<tr>
<td>Q7</td>
</tr>
<tr>
<td>Q8</td>
</tr>
<tr>
<td>Q9</td>
</tr>
</tbody>
</table>

Please check this box or indicate your approval if you have no corrections to make to the PDF file

Thank you for your assistance.
Highlights

- We compared MRI and neuropsychological test data in twins discordant for VCP mutation.
- Affected twin revealed rapid cognitive decline in a span of 1 year.
- FTD related cognitive features may precede behavioral changes in VCP disease.
- Cognitive-behavioral impairment may be missed on routine neurological exam and MMSE.
- Need for a dedicated screening measure to recognize the neurological impairment.
Case report

A case report comparing clinical, imaging and neuropsychological assessment findings in twins discordant for the VCP p.R155C mutation

Abhilasha Surampalli, Brian T. Gold, Charles Smith, Rudy J. Castellani, Manaswitha Khare, Hon Yu, Celeste Nguyen, Mary Lan, Marie Wencel, Sharon Wigal, Vince Caiozzo, Virginia Kimonis

Abstract

Inclusion body myopathy, Paget disease of bone and/or frontotemporal dementia is an autosomal dominant disease caused by mutations in the Valosin Containing Protein (VCP) gene. We compared clinical findings including MRI images and neuropsychological assessment data in affected and unaffected twin brothers aged 56 years from a family with the p.R155C VCP gene mutation. The affected twin presented with a 10 year history of progressive proximal muscle weakness, difficulty swallowing, gastroesophageal reflux, fecal incontinence, and peripheral neuropathy. Comprehensive neuropsychological testing revealed rapid cognitive decline in the absence of any behavioral changes in a span of 1 year. This case illustrates that frontotemporal dementia related cognitive impairment may precede behavioral changes in VCP disease as compared with predominance of behavioral impairment reported in previous studies. Our findings suggest that there is a need to establish VCP disease specific tools and normative rates of decline to detect pre-clinical cognitive impairment among affected individuals.

Keywords: VCP; Inclusion body myopathy; Frontotemporal dementia screening; Multisystem proteinopathy; Neuropsychological assessment

1. Introduction

Hereditary inclusion body myopathy (h-IBM), Paget disease of bone (PDB) and/or frontotemporal dementia (FTD), also called multisystem proteinopathy or IBMPFD; (OMIM 167320) is caused by dominantly inherited mutations in the Valosin Containing Protein (VCP) gene mapped to the human chromosomal region 9q13.3-12 [1–4]. One of the main functions of the protein is as a chaperone for proteasomal and DNA-binding protein 43; VCP, Valosin Containing Protein, WMS-R, Wechsler Memory Scale – Revised.

* Corresponding author. Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, USA

** Division of Neuropathology, University of Maryland School of Medicine, Baltimore, MD, USA

† Department of Radiology, University of California Irvine Medical Center, Orange, CA, USA

‡ Child Development Center, Department of Pediatrics, University of California Irvine, Irvine, CA, USA

§ Departments of Orthopedics, Physiology & Biophysics, University of California Irvine, Irvine, CA, USA

Received 23 May 2014; received in revised form 20 September 2014; accepted 13 October 2014
as FTD. FTD is characterized by comprehension deficits, relative preservation of memory, paraphasic errors, dysexia, dyscalculia, and social unawareness [10]. In later stages, auditory comprehension deficits for simpler one-step commands, alexia, and agraphia may be seen [1,3]. FTD typically accelerates the progression of the disease [15]. Currently, there are no curative treatments for the myopathy or FTD. However, selective serotonin reuptake inhibitors are sometimes used in patients to control obsessive symptoms and mood [16]. Affected individuals typically die in their 50s from respiratory insufficiency or cardiac failure or complications from early stage dementia [5,10,17]. Less common phenotypic features reported in VCP disease include cardiomyopathy, hepatic steatosis, cataracts, sensory motor axonal neuropathy, pyramidal tract dysfunction, sphincter disturbance, sensorineural hearing loss, and amyotrophic lateral sclerosis (ALS) [11,12,18–20]. Histologically, the affected muscle and brain typically show the presence of rimmed vacuoles, ubiquitin and TDP-43 positive inclusions [3,11,12,18–22]. TDP-43 is the major component of inclusions characteristic of VCP-associated FTD and ALS-like pathology, placing VCP disease in a novel category of neurodegenerative diseases termed TDP-43 proteinopathies [23,24].

Because of the heterogeneity in VCP disease, studying fraternal twin brothers discordant for VCP disease provides a unique opportunity to highlight differences in the neuropsychological studies, key MRI findings of brain and muscle and pulmonary function studies. The diagnosis of FTD requires a thorough understanding of family history of dementia, with assessment of behavioral and personality changes, in addition to an extensive battery of neuropsychological testing. With increasing focus on formulating a concise screening tool to detect cognitive and behavioral impairment in various FTD syndromes in a clinical setting, the literature is full with examples of various screening measures that is being utilized and validated in ALS [22,25], and non-ALS [26] patient populations. However, no screening tool has been validated or used in VCP disease. This case report emphasizes the need to establish a VCP disease specific standardized screening tool to monitor cognitive and behavioral status in a busy clinical setting to diagnose pre-clinical FTD in VCP disease. The tool could also be useful in deciding if a patient requires the extensive diagnostic neuropsychological testing.

2. Case report

The twins who were discordant for the p.R155C VCP mutation were recruited and evaluated at the University of California, Irvine ICTS (Institute of Clinical and Translational Science) for a 2 day visit. Informed consent was obtained from the individuals for the study which was approved by the Institutional Review Board of the University of California, Irvine. The diagnosis of VCP disease was confirmed or excluded by molecular genetic testing in the Mitomed CLIA certified laboratory. Clinical evaluations, review of records, analysis of serum alkaline phosphatase (AP), creatine kinase (CK), X-rays, dual-emission x-ray absorptiometry (DEXA), pulmonary function testing (PFT), magnetic resonance imaging (MRI) of brain (Fig. 1), MRI of lower limbs (Fig. 2), and psychometric testing were obtained (Table 1) The autopsy report of the deceased twin was reviewed.

Both brothers underwent MRI scanning and psychometric testing at the age of 55 years at the University of Kentucky, Lexington, and at age 56 years at UC Irvine. The diagnostic comprehensive neuropsychological test batteries administered were similar for both the twins. The test batteries were administered at the same center by the same psychometrist/psychologists (BTG/SW, CN), all of whom had special training in FTD. The comprehensive neuropsychological test batteries included Mini-Mental State Examination (MMSE), HANDS screening depression tool [27], The Stroop Interference substest, Victoria version [28,29], Trails A and Trails B [30], The Digit

Span subtests from the Wechsler Memory Scale – Revised (WMS-R) [31], The Letter Fluency Test [28], and The Boston Naming Test [32].

On review of the family history, several members were diagnosed with muscle weakness, Paget’s disease and FTD. Their mother developed myopathy at age 37 years and passed away at age 64 years. The maternal grandmother developed myopathy and passed away at age 65 years. A brother and a sister developed myopathy at age 37, and 50 years, respectively. Three first cousins had myopathy and one of them also developed Paget’s disease. A maternal aunt had myopathy and FTD. The affected twin has a daughter and a son who are mutation positive but are currently asymptomatic.

Case 1 is the affected non-ambulatory twin brother with a 10 year history of worsening muscular weakness in his both upper and lower limbs. He was first diagnosed with inclusion body myopathy and Paget’s disease at the age of 46 years when he developed difficulty climbing stairs. Later the diagnosis was confirmed by molecular testing. Genomic DNA sequencing at the Mitomed Laboratory (UC Irvine) detected a heterozygous deleterious mutation at position c.463 C > T in exon 5 of the VCP gene causing an amino acid arginine to cysteine substitution at position p.R155C. About 2 years after the disease onset he claimed disability and at age 55 years he became wheelchair bound. He experienced difficulty swallowing, gastroesophageal reflux with epigastric pain and fecal incontinence secondary to both functional incontinence and poor anal sphincter control. He experienced dyspnea on mild exertion and orthopnea. Chest examination revealed decreased breath sounds in bilateral lower lung fields. He also showed signs of 2+ pitting edema in his lower extremities, extending up to the knees, and this being attributed to relative inactivity. On appearance, he was well dressed, alert and oriented to place and time. He was able to recall his past events without any difficulty. He was cooperative throughout the visit and maintained eye contact. He was well articulated with normal perception but a little depressed about his condition. He did not manifest any positive symptoms including delusions, hallucinations or suicidal ideation. Neurological examination identified extreme proximal and distal muscular weakness and restricted movements in all four extremities. Scapular winging was noted which was more pronounced on his left side. Neurological exam also revealed diminished sensations to tuning fork over the left toe, and dysdiadochokinesia of the upper extremities.

2.1. Brain pathology

The affected twin ultimately succumbed to disease at the age of 58 years and consent for an autopsy was provided by the family. Brain weight was 1310 g. Detailed microscopic examination revealed mild thinning of the cerebral gyri with widening of the sulcal spaces. Ubiquitin immunostains performed in frontal, temporal with hippocampal sections revealed faint cytoplasmic staining in rare cortical neurons and occasional faint neuronal nuclear staining, but no definite

<table>
<thead>
<tr>
<th>MRI Brain Measure</th>
<th>Affected twin age 55 (06/09/2008)</th>
<th>Unaffected twin age 55 (07/01/2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Intracranial Volume (TIV), cc</td>
<td>1,667.7</td>
<td>1,604.6</td>
</tr>
<tr>
<td>Total Brain Volume, cc</td>
<td>1,229.3</td>
<td>1,242.6</td>
</tr>
<tr>
<td>Cerebral White Matter Volume, cc</td>
<td>517.3</td>
<td>525.4</td>
</tr>
<tr>
<td>Cerebral Grey Matter Volume, cc</td>
<td>483.6</td>
<td>493.1</td>
</tr>
<tr>
<td>Frontal Cortex (% of TIV)</td>
<td>5.44</td>
<td>5.76</td>
</tr>
</tbody>
</table>

Free surfer was used to estimate volumes

Fig. 1. T1-weighted sagittal MRI images of the affected (A) and unaffected (B) twins at age 55 years and brain volumes from MRI scans performed at age 55 years.
nuclear or cytoplasmic inclusions were seen. Scattered small perinuclear vacuoles were seen in the cortical pyramidal neurons (Fig. 3). There was staining of the white matter with a granular pattern and rare axonal corkscrews, and glial nuclear staining. There was considerable fibrosis of the deep white matter arteries, with pigmented macrophages and rare cuffs of lymphocytes in the perivascular spaces. There was pallor, microvacuolation and abundant deposits of corpora amylacea in the subventricular white matter of the cingulum (long standing gliosis), and scattered corpora amylacea in the subpial spaces of the cortical sections. There was mild neuronal loss in the substantia nigra, with groups of pigmented macrophages. There were very rare degenerating enlarged axons. No neurofibrillary tangles or neuritic plaques, Lewy pale bodies or other intraneuronal inclusions were identified. There were petechial

Fig. 2. MRI of thighs and Biodex measurements from twins discordant for the VCP disease. Pixel-intensity histograms of the segmented muscle group in T2-weighted histograms of (A) Control twin and (B) Affected twin. (C) Biodex measurements of control and affected twins of VCP disease.

Fig. 3. Frontal cortex stained with hematoxylin and eosin shows nonspecific perineuronal vacuolation. Ubiquitin immunohistochemistry was nonspecific in the cerebral cortex and white matter. Scale bar = 200 μm.
hemorrhages in the medullary section, some in the dorsal aspect, below the fourth ventricle, and some perivascularly. TDP-43 immunohistochemistry (rabbit polyclonal antibody to C-terminal TDP-43 peptide corresponding to amino acids 355–369) of the frontal and temporal cortices showed a normal pattern of nuclear immunoreactivity with no TDP-43-positive cytoplasmic inclusions or neurites identified.

Case 2 is the 56 year old unaffected twin brother tested negative for the familial VCP gene mutation. He had no specific health complaints except for hypertension. His muscle strength and activity level were normal for his age. He underwent a similar battery of testing for comparison with his affected twin.

Neuropsychological Assessment showed normal FBI scores at age 55 years, indicating no behavioral features of early FTD. Repeat testing approximately 11 year later demonstrated a decline in the affected brother, particularly on the Category Fluency test, Boston naming and Trails B tests, whereas global MMSE and Beck depression scale scores were preserved (Table 1) on comparison with his unaffected twin. Detailed neuropsychological examination 1 year later revealed impairment on the Boston Naming test indicative of dysnomia, difficulties on the Trail Making Test A and B, suggesting impaired attention and visual sequencing and difficulties on the Digit Span Test, suggesting impaired working memory functioning. In addition, the affected twin showed reduced performance on the same tests compared with his own level of performance 1 year previously. He also displayed difficulty in verbal fluency from Controlled Word Association (FAS) and Letter Fluency Category Test (Animal). He displayed dysnomia, clear deficiency of short-term memory and executive functions. His cognitive language decline was evident with minimal depression. In contrast the relatively low fluency score at the first test at 55 years in the unaffected twin raises the possibility that the letter fluency may be a less sensitive measure for assessment of behavioral features in individuals with VCP mutation. However, given the normal score on this test at second visit, and that this test has well-established sensitivity to features of FTD, it is more likely that the low score at first testing in the unaffected twin could have been influenced by motivational factors, medications, lack of sleep, or distraction. Nevertheless, the discordance in scores highlights the importance of repeat neuropsychological testing in establishing accurate diagnoses.

MRI of the brain of both affected and unaffected twin at age 55 years showed no generalized atrophy or focal atrophy in the frontal region or elsewhere in the affected twin. Brain volumes were similar at age 55 years (Fig. 1) [33]. Both brothers underwent MRI scans of the legs (Fig. 2) and shoulders.

Additional studies showed plasma alkaline phosphatase (ALP) (70 IU/L; normal range 26–110 IU/L) and plasma creatinine phosphokinase (CK) (99 IU/L; normal range 22–269 IU/L) for the affected twin were within the normal range. Electromyography/nerve conduction studies revealed myopathic changes with early recruitment and increased polyphasic motor units of the right deltoid in the affected twin.

A bone scan of the affected twin at 54 years revealed sclerotic lesions and cortical thickening of diaphysis and metaphysis of the distal bilateral humerus, bilateral femur and anterior aspects of bilateral ribs. He also had compression deformities at mid thoracic vertebral bodies, multilevel lumbar chronic degenerative disease and mild scoliosis consistent with PDB. Radiographs of the chest of the affected twin revealed bibasilar atelectasis of the lungs. DEXA analysis of the affected twin at 56 years revealed 50.3% body fat compared with 31% in unaffected twin partly attributable to fatty replacement of muscle fibers seen in advanced stage of myopathy. The bone mineral density of the affected twin of the total hip was 0.682 g/cm² with a corresponding T score of −2.3 g/cm² indicative of osteopenia and increased risk for bone fractures. Magnetic resonance imaging (MRI) (Fig. 2) in both flexor and extensor muscles of the thigh in the affected twin showed diffuse high signal intensity resulting from the nearly totally fatty replacement of the muscles. Thigh muscles in the unaffected twin (left) revealed normal uniform low signal intensity. Dynamometry testing using the hydraulic hand dynamometer showed the mean upper extremity muscle strength in the affected twin on right and left side were 29.4, and 45.4 lbs respectively compared with 80, and 76.8 lbs for the unaffected twin revealing muscle weakness compromising the physical function in the affected twin.

Echocardiogram of the affected twin revealed mild global hypokinesia, moderate concentric left ventricular hypertrophy, ejection fraction of 56% and a normal left ventricular systolic function. Pulmonary function studies in him revealed his best Forced Vital Capacity was 1.54 L. His Forced Expiratory Volume was 1.12 L. The Peak Expiratory Volume was 3.08 L; the Maximal Inspiratory Pressure was recorded at 53 mmHg and Maximal Expiratory Pressure at 52 mmHg suggesting a severe restrictive ventilatory impairment. Pulmonary function studies in the unaffected twin were entirely normal.

3. Discussion

Studying twins discordant for the disease provides a unique opportunity to study the effects of the VCP mutation since the effects of the prenatal environment, age, and sex are common. There are some limitations however since dizygotic twins share on an average 50% of their genes and are exposed to diverse environmental and other genetic influences [34]. The Swedish Twin Registry data on longevity studies reported that over the total age range examined, one third of the variance in longevity is attributable to genetic factors, and almost all of the remaining variance is due to non-shared, individual specific environmental factors. Data on cognitive ability in this population indicated that 50% variation in general is due to genetic differences and approximately 40% of general cognitive abilities are environmental [35].

We have reported that approximately 33% of affected individuals have FTD at late stages of the disease. However, identified VCP carriers have not always had a comprehensive evaluation, and it is likely that more individuals with early behavioral and cognitive alterations would be detected using a uniform assessment protocol. Differences between the affected and unaffected twin were not apparent on the global MMSE scores. However, in-depth neuropsychological testing revealed...
performance declines on similar semantic and executive tests in the affected twin over a relatively short, 1-year follow up period. In contrast, classic FTD behavioral changes were notably absent. This suggests that FTD-related cognitive features may preclude behavioral changes in VCP disease as compared with predominance of behavioral impairment reported in previous studies [10] [36] [37].

Neuropathological findings in more advanced FTD are atrophy and neuronal loss in the frontal and temporal lobes with ubiquitin and TDP-43 positive inclusions that co-localize with ubiquitin [21,23]. Forman et al. (2006) studied the neuropathology in eight subjects. All six with clinical FTD or dementia and one of the two individuals without dementia had some degree of brain atrophy with associated neuron loss, spongiosis, and gliosis, extensive ubiquitin-positive intranuclear inclusions and dystrophic neurites throughout the neocortex but most severe in the temporal lobe [38]. The autopsy report in the affected twin indicated only mild neurodegenerative changes. The rapid demise of the patient within 2 years after cognitive testing was due to severe neuromuscular complications, and not apparently related to FTD. The affected twin did not show ubiquitin or TDP-43 inclusions, which suggests that these changes occur with progression of the disease that may have occurred if death had not supervised. This case illustrates that cognitive decline can occur in the absence of these features, possibly resulting from more subtle metabolic cerebral alterations not assessed here.

Although the MMSE remains the most thoroughly studied instrument, from this report it is clear that MMSE is not sensitive in screening for frontotemporal dementia in VCP patients associated with problems in verbal fluency, short-term memory and executive function domains of cognition. The comprehensive neuropsychological assessment thus remains the ‘gold standard’ in the diagnosis of FTD. There is a need for a rapid screening test for FTD associated with VCP disease. The most recent evidence update from the U.S. Preventive Services Task Force 2013 [39] reported test performance, diagnostic accuracy of brief screening instruments to detect cognitive impairment. Pooled estimates across 14 studies for MMSE (n = 10,185) resulted in 88.3% sensitivity (95% CI, 81.3–92.9) and 86.2 specificity (95% CI, 81.8–89.7) for a cut-point of 23/24 or 24/25 to detect dementia. Other screening instruments including Clock Drawing Test (CDT), Mini-Cog, Memory Impairment Screen (MIS), Abbreviated Mental Test (AMT), Short Portable Mental Status Questionnaire (SPMSQ), Free and Cued Selective Reminding Test (FCSRT), 7-Minute Screen (7MS), Telephone Interview for Cognitive Status (TICS), self-administered or informant-based screening tool Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) showed much wider range of sensitivity and specificity. This case also illustrates that cognitive decline can occur relatively rapidly. Establishing an appropriate screening measure which is simple, easy to administer and brief for administration at regular intervals in busy clinical settings is desirable. Utilizing tests for cognition including attention, concentration, working memory, fluency and existing dementia screening measures would also be useful in detecting preclinical frontotemporal dementia. Patients with VCP disease should therefore have monitoring of their cognitive and behavioral status at regular basis since there is an increased risk for cognitive impairment. The extensive battery of neuropsychological assessment is limited by need for trained staff, screening time and funding. An alternative simple, easy to administer, sensitive screening measure that can be administered at regular intervals in clinical settings will recognize cognitive and behavioral impairment that will not be detected on routine neurological examination. Woolley et al. (2010) [22] developed and validated a screening tool, the ALS Cognitive Behavioral Screen tool (ALS-CBS), to accurately differentiate ALS-FTD from other ALS patients. This test could be very helpful in VCP disease, but nevertheless needs to be validated in this group of patients.

Acknowledgments

We would like to thank the family for their participation in this study and acknowledge the John Tu & Thomas Yuen Center for Functional Onco-Imaging. We would like to thank Dr. Steven Leven and Dr. Yoshioka from University of California, Irvine for their expertise. Funding for these studies is from the National Institutes of Health: Grant AR050236 (VK), Muscular Dystrophy Association and the UC Irvine ICTS (Institute of Clinical Translational Science).

Appendix: Supplementary material

Supplementary data to this article can be found online at doi:10.1016/j.nmd.2014.10.003.

References

